On the complexity of stochastic integration
نویسندگان
چکیده
We study the complexity of approximating stochastic integrals with error ε for various classes of functions. For Ito integration, we show that the complexity is of order ε−1, even for classes of very smooth functions. The lower bound is obtained by showing that Ito integration is not easier than Lebesgue integration in the average case setting with the Wiener measure. The upper bound is obtained by the Milstein algorithm, which is almost optimal in the considered classes of functions. The Milstein algorithm uses the values of the Brownian motion and the integrand. It is bilinear in these values and is very easy to implement. For Stratonovich integration, we show that the complexity depends on the smoothness of the integrand and may be much smaller than the complexity of Ito integration.
منابع مشابه
Wilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملThe Role of International Financial Integration in Production and Inflation Fluctuations in Iran: Using a Dynamic Stochastic General Equilibrium Model
The effects of International financial integration on the fluctuations of variables in response to shocks are a matter of heavily concentrated literature of the business cycle in recent years. In this paper, a New Keynesian DSGE model is developed in which there is a channel for capital account changes through the foreign deposit's inflow and outflow. Then the effects of financial integration a...
متن کاملAn optimal method based on rationalized Haar wavelet for approximate answer of stochastic Ito-Volterra integral equations
This article proposes an optimal method for approximate answer of stochastic Ito-Voltrra integral equations, via rationalized Haar functions and their stochastic operational matrix of integration. Stochastic Ito-voltreea integral equation is reduced to a system of linear equations. This scheme is applied for some examples. The results show the efficiency and accuracy of the method.
متن کاملTwo-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy
The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملA wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001